
Operators & Commutators

Quantum Operators: Physical observables are
represented by linear, Hermitian operators acting
on the wavefunction.

• Linear operator: Â is linear if Â(c1ψ1 +

c2ψ2) = c1Âψ1 + c2Âψ2.

• Hermitian (self-adjoint): Â satisfies
⟨ϕ|Â|ψ⟩ = ⟨ψ|Â|ϕ⟩∗, which guarantees real
eigenvalues and orthogonal eigenfunctions.

• Eigenvalue equation: Âϕn = anϕn. Mea-
surement of observable A yields eigenvalue
an with eigenstate ϕn.

• Commutator: [Â, B̂] = ÂB̂ − B̂Â. If
[Â, B̂] = 0, then Â and B̂ share a common
set of eigenstates (they are simultaneously
measurable).

Important Operators: Identity 1̂ (unity, 1̂ψ =
ψ); momentum p̂ = −iℏ∇; position x̂ (multiplica-
tion by x); Hamiltonian Ĥ (total energy operator).
Angular Momentum: Components Ĵx, Ĵy, Ĵz
obey [Ĵx, Ĵy] = iℏ Ĵz (and cyclic permutations). In
general [Ji, Jj ] = iℏϵijkJk. Raising/lowering oper-
ators J± = Jx ± iJy satisfy J+|j,m⟩ ∝ |j,m+ 1⟩.
Uncertainty Principle: For two Hermitian op-
erators Â and B̂:

∆A ∆B ≥ 1

2

∣∣∣⟨[Â, B̂]⟩
∣∣∣ ,

where (∆A)2 = ⟨A2⟩ − ⟨A⟩2 is the variance. In
particular, [x̂, p̂] = iℏ implies ∆x∆p ≥ ℏ/2.
Constants of Motion: If an operator commutes
with the Hamiltonian ([Ĥ, Â] = 0), then A is con-
served (constant in time). For a time-independent
Hamiltonian, d

dt
⟨Â⟩ = i

ℏ ⟨[Ĥ, Â]⟩. Thus, observ-
ables that commute with Ĥ correspond to con-
served quantities.

Group Theory

Molecular Symmetry: The set of all symmetry
operations (rotations, reflections, inversions, etc.)
that leave a molecule unchanged forms a point
group. Each symmetry operation corresponds to a
group element. A group must satisfy:

• Closure: Combining any two group elements
yields another element of the group.

• Associativity: (AB)C = A(BC) for any ele-
ments A,B,C.

• Identity: There is an identity E such that
AE = EA = A for all A.

• Inverse: For each A, there is an inverse A−1

with AA−1 = A−1A = E.

Representations: A representation maps each
group element to a matrix (or linear operator) such
that group multiplication corresponds to matrix
multiplication. Irreducible representations (irreps)
are representations that cannot be reduced (no
smaller invariant subspace). The character χ(R)
of a representation for operation R is the trace of
its matrix. Characters for all irreps are summa-
rized in a character table. For example:

Character Table of C2v

Irrep E C2 σv(xz) σ′
v(yz)

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Each row is an irrep (A1, A2, B1, B2 for C2v); each
column is a symmetry operation class. Characters
indicate how a basis function transforms under
each operation.
Orthogonality Theorems: Characters of irreps
are orthonormal (Great Orthogonality Theorem
leads to character orthonormality). For group or-
der h:

LOT:
1

h

∑
R

χ(α)(R)χ(β)(R)∗ = δαβ ,

BOT:
1

h

∑
α

χ(α)(R)χ(α)(R′)∗ = δRR′ ,

where LOT (Little Orthogonality Theorem) shows
different irreps α ̸= β have orthogonal charac-
ter rows, and BOT (Big Orthogonality Theorem)
shows orthogonality of columns (classes). These
imply the number of irreps equals the number of
classes.
Reducibility: Any representation can be ex-
pressed as a direct sum of irreps. The characters
of a reducible representation Γ can be decomposed
using ⟨Γ, α⟩ = 1

h

∑
R χ

Γ(R)χ(α)(R)∗ to find how
many times irrep α appears.
Selection Rules: Symmetry dictates allowed
transitions and interactions. An integral (e.g. tran-
sition dipole ⟨ψi|µ|ψf ⟩) is nonzero only if the over-
all symmetry of the integrand contains the totally
symmetric representation. In other words, the
product of irreps for initial state, operator, and
final state must include A1 (for C2v). Symmetry
thus predicts spectral lines and degeneracies.

Time Dependence & Pertur-
bation

Schrödinger Equation: Quantum dynamics are
governed by the time-dependent Schrödinger equa-
tion

iℏ ∂
∂t

Ψ(r, t) = Ĥ Ψ(r, t) ,

which for a time-independent Hamiltonian yields
solutions Ψn(r, t) = ψn(r)e

−iEnt/ℏ. The spa-
tial part ψn(r) satisfies the time-independent
Schrödinger equation (TISE):

Ĥ ψn(r) = En ψn(r) ,

an eigenvalue problem defining stationary states
and quantized energies En.
Time Evolution Operator: For time-
independent Ĥ, Û(t) = e−iĤt/ℏ evolves states:
|Ψ(t)⟩ = Û(t)|Ψ(0)⟩. If [Ĥ, Â] = 0, then Â is con-
stant in time (Heisenberg picture: operators evolve
as Â(t) = eiHt/ℏÂ(0)e−iHt/ℏ).
Time-Independent Perturbation: Suppose
Ĥ = Ĥ(0) + λV̂ , with λ small. For non-degenerate
case, zeroth-order solutions are Ĥ(0)|n0⟩ = E0

n|n0⟩.
The corrections are found as power series in λ:
En = E0

n + λE
(1)
n + λ2E

(2)
n + · · · , and |n⟩ =

|n0⟩ + λ|n(1)⟩ + · · · . The first-order and second-
order energy corrections are:

E(1)
n = ⟨n0|V̂ |n0⟩ , E(2)

n =
∑
m ̸=n

|⟨m0|V̂ |n0⟩|2

E0
n − E0

m

.

The first-order correction shifts En by the diagonal
matrix element of V̂ . The second-order term ac-
counts for virtual transitions to other states m ≠ n.
The perturbed eigenstate to first order is

|n(1)⟩ =
∑
m ̸=n

⟨m0|V̂ |n0⟩
E0

n − E0
m

|m0⟩,

showing that V̂ mixes in a small component of
other eigenstates.
Time-Dependent Perturbation: If a pertur-
bation V̂ (t) is applied (e.g. an oscillating elec-
tromagnetic field), transitions between states can
occur. For a perturbation turned on at t = 0,
time-dependent perturbation theory gives transi-
tion amplitudes via time integrals. In the case of
a constant perturbation (or monochromatic per-
turbation at resonance), Fermi’s Golden Rule pro-
vides the transition rate from initial state i to final

state f :

Wi→f =
2π

ℏ
|⟨f |V̂ |i⟩|2 ρ(Ef ) ,

where ρ(Ef ) is the density of final states at energy
Ef . This rule (derived as a first-order perturbative
result for long times) says the transition probabil-
ity per unit time is proportional to the square of
the matrix element of the perturbation between |i⟩
and |f⟩, and to the number of final states available
at that energy.
Selection Rules (TD): The time-dependent per-
turbation (often an oscillating field) usually has
specific symmetry (e.g. an electric dipole inter-
action is odd under inversion). Thus, transitions
occur only between states of appropriate symme-
try. For example, electric dipole transitions require
⟨f |µ̂|i⟩ ̸= 0, which typically means the parity (or
overall symmetry) of |f⟩ and |i⟩ differ. Group the-
ory can predict these rules (e.g. in a character
table, x, y, z coordinates often belong to certain
irreps, indicating allowed dipole transition direc-
tions).

Electronic Structure Theory

Born-Oppenheimer (BO) Approximation:
Simplifies the molecular Schrödinger equation by
decoupling nuclear and electronic motions. Be-
cause nuclei are much heavier and move slower,
one assumes nuclei are nearly fixed while solving for
electronic wavefunctions. The total wavefunction
is written as Ψ(r,R) ≈ ψel(r;R)χnuc(R), where r
denotes electronic coordinates and R nuclear coor-
dinates. ψel(r;R) solves the electronic Schrödinger
equation for fixed R:

Ĥel(r;R)ψel(r;R) = Eel(R)ψel(r;R),

yielding an electronic energy Eel(R) (the potential
energy surface for nuclear motion). χnuc(R) then
solves the nuclear equation with Eel(R) as part of
its potential. The BO approximation thus breaks
the full problem into an electronic part and a nu-
clear part, greatly reducing complexity.
Antisymmetry and Spin: Electrons are
fermions, so the N -electron wavefunction must
be antisymmetric under exchange of any two elec-
trons (Pauli exclusion principle). One convenient
way to ensure this is using a Slater determinant.
For example, with two electrons:

Ψ(1, 2) =
1√
2!
(ϕa(1)ϕb(2)− ϕa(2)ϕb(1)),
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which is antisymmetric under exchange of elec-
trons 1 and 2. Here ϕa, ϕb are single-electron spin-
orbitals (each a spatial orbital times a spin state).
In general, a Slater determinant for N electrons
is the N ×N determinant of N spin-orbitals, nor-
malized by 1/

√
N !.

Hartree–Fock (HF) Method: Approximates
the multi-electron wavefunction by a single Slater
determinant (a single configuration). It yields the
Hartree–Fock equations for the orbitals:

F̂ ϕi = ϵi ϕi ,

where F̂ is the Fock operator (an effective one-
electron Hamiltonian). F̂ includes the kinetic en-
ergy and nuclear attraction (the one-electron part
ĥ), plus electron-electron repulsion in an averaged
way:

F̂ = ĥ+
∑
j occ

(
Ĵj − K̂j

)
.

Here Ĵj is the Coulomb operator (it computes the
electrostatic repulsion due to an electron in orbital
j) and K̂j is the exchange operator (arising from
antisymmetry; it has no classical analog). Each or-
bital ϕi is solved in the field of the other electrons;
the solutions are obtained self-consistently (the
HF procedure: guess orbitals, construct F̂ , solve
for new orbitals, and repeat until convergence).
The resulting orbital energies ϵi and orbitals ϕi

approximate the true multi-electron solution. The
total HF energy is

EHF =
occ∑
i

⟨ϕi|ĥ|ϕi⟩+
1

2

occ∑
i,j

(
⟨ϕiϕj |

1

r12
|ϕiϕj⟩−⟨ϕiϕj |

1

r12
|ϕjϕi⟩

)
,

where the two terms in the double sum are the
Coulomb (Jij) and exchange (Kij) integrals. (The
1/2 avoids double-counting pair interactions.)
Electron Correlation: HF is a mean-field the-
ory and neglects electron correlation (the instanta-
neous interactions between electrons beyond the
average field). The difference Eexact − EHF is the
correlation energy. To recover correlation and im-
prove accuracy, post-Hartree–Fock methods are
used:

• Møller–Plesset perturbation theory (MP2,
MP3, ...): Treats the electron-electron inter-
action beyond HF as a perturbation. MP2
(second order) often gives a first estimate of
correlation energy.

• Configuration Interaction (CI): Expands the
wavefunction in a linear combination of
Slater determinants (configurations). For
example, CI singles and doubles (CISD) in-

cludes one- and two-electron excitations out
of the HF determinant. Full CI (all excita-
tions in a given basis) is exact within that
basis but grows combinatorially with system
size.

• Coupled Cluster (CC): Uses an exponential
ansatz |Ψ⟩ = eT̂ |ΦHF⟩, where T̂ is a cluster
operator (e.g. T1 and T2 for single and dou-
ble excitations). CCSD(T), which includes
singles, doubles, and perturbative triples,
is often considered the “gold standard” for
quantum chemistry due to its high accuracy.

• Multi-Configurational SCF (MCSCF): Al-
lows multiple Slater determinants and op-
timizes both orbitals and expansion co-
efficients self-consistently. For example,
CASSCF (Complete Active Space SCF) is
used for situations with strong static corre-
lation (when one determinant is insufficient,
such as bond breaking).

Density Functional Theory (DFT): An alter-
native approach using the electron density ρ(r) as
the primary variable instead of the wavefunction.
The Hohenberg–Kohn theorems (1964) state that
the ground-state energy is a unique functional of
ρ, and the true ρ minimizes this energy functional.
Kohn–Sham DFT (1965) introduces a set of or-
bitals to represent ρ and divides the energy into
kinetic, electron-nuclear, Coulomb (Hartree), and
exchange-correlation Exc[ρ] terms. In practice, one
solves Kohn–Sham equations, which resemble HF
equations:(
− ℏ2

2m
∇2 + Vext(r) + VH [ρ](r) + Vxc[ρ](r)

)
ϕi(r) = ϵi ϕi(r),

where VH is the Hartree (Coulomb) potential from
ρ and Vxc is the exchange-correlation potential
derived from Exc[ρ]. DFT includes electron corre-
lation effects through approximate Exc functionals
(LDA, GGA, hybrid, etc.) at a lower computa-
tional cost than explicit multi-electron wavefunc-
tion methods. It is widely used for large systems,
though its accuracy depends on the chosen func-
tional.
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