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Abstract

Here I give a step-by-step solution to Q8 and Q10 of Prof Tew’s EST

worksheet 1.

Problem 8

Let’s begin with a simple two-electron case to understand how terms drop out,

then generalize. For two electrons, the Slater determinant is:

|Ψ⟩ =
√
2!Â |φ1φ2⟩ =

1√
2
(|φ1φ2⟩ − |φ2φ1⟩) (1)

Let’s evaluate ρ(x) for this two-electron case:

ρ(x) = ⟨Ψ| [δ(x − x1) + δ(x − x2)] |Ψ⟩ (2)

=
1

2

(
⟨φ1φ2| − ⟨φ2φ1|

)
[δ(x − x1) + δ(x − x2)]

(
|φ1φ2⟩ − |φ2φ1⟩

)
(3)

Let’s focus on δ(x − x1) terms first:

1

2

[
⟨φ1φ2| δ(x − x1) |φ1φ2⟩

− ⟨φ1φ2| δ(x − x1) |φ2φ1⟩
− ⟨φ2φ1| δ(x − x1) |φ1φ2⟩
+ ⟨φ2φ1| δ(x − x1) |φ2φ1⟩

]
(4)

We can now evaluate each term:

• Term 1: ⟨φ1φ2| δ(x − x1) |φ1φ2⟩

= |φ1(x)|2 ⟨φ2|φ2⟩ = |φ1(x)|2 (5)
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• Term 2: ⟨φ1φ2| δ(x − x1) |φ2φ1⟩

= φ∗1(x)φ2(x) ⟨φ2|φ1⟩ = 0 (6)

due to orbital orthogonality

• Term 3: ⟨φ2φ1| δ(x − x1) |φ1φ2⟩

= φ∗2(x)φ1(x) ⟨φ1|φ2⟩ = 0 (7)

also due to orbital orthogonality

• Term 4: ⟨φ2φ1| δ(x − x1) |φ2φ1⟩

= |φ2(x)|2 ⟨φ1|φ1⟩ = |φ2(x)|2 (8)

Following the same process for δ(x − x2) terms:

1

2

[
⟨φ1φ2| δ(x − x2) |φ1φ2⟩

− ⟨φ1φ2| δ(x − x2) |φ2φ1⟩
− ⟨φ2φ1| δ(x − x2) |φ1φ2⟩
+ ⟨φ2φ1| δ(x − x2) |φ2φ1⟩

]
(9)

Again, cross terms drop out due to orthogonality, leaving us with:

1

2
(|φ2(x)|2 + |φ1(x)|2) (10)

Adding all surviving terms:

ρ(x) =
1

2
(|φ1(x)|2 + |φ2(x)|2) +

1

2
(|φ2(x)|2 + |φ1(x)|2) (11)

= |φ1(x)|2 + |φ2(x)|2 (12)

Generalization to N Electrons

For the N-electron case, the same pattern holds but with more terms. The key

points remain:

1. Direct terms (⟨φiφj | δ(x − xk) |φiφj⟩) survive and contribute |φi(x)|2
2. Cross terms (⟨φiφj | δ(x − xk) |φjφi ⟩) vanish due to orthogonality
3. The normalization factor 1N! from Â exactly balances the number of equiv-

alent permutations

Therefore, in general:

ρ(x) =
∑
i

|φi(x)|2 (13)
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Double Occupation Case

For doubly occupied spatial orbitals ϕj(r):

ρα(r) =
∑
j

|ϕj(r)|2 = ρβ(r) (14)

The equality holds because each spatial orbital contributes identically to both

α and β spin densities.

Problem 10 Part (a): Molecular Orbital Coefficients

Given Information

• MOs are linear combinations: σg = χACAg + χBCBg and σu = χACAu +

χBCBu

• 1s functions are normalized: ⟨χA|χA⟩ = ⟨χB|χB⟩ = 1

• Overlap integral: ⟨χA|χB⟩ = S

Finding the MO Coefficients

Using symmetry properties:

• σg is symmetric: CAg = CBg

• σu is antisymmetric: CAu = −CBu

Let’s impose normalization:

For σg:

1 = ⟨σg |σg⟩
= (C2Ag + C

2
Bg + 2CAgCBgS)

= 2C2Ag(1 + S) (15)

Therefore:

CAg = CBg =
1√

2(1 + S)
(16)

For σu:

1 = ⟨σu |σu⟩
= (C2Au + C

2
Bu − 2CAuCBuS)

= 2C2Au(1− S) (17)

Therefore:

CAu = −CBu =
1√

2(1− S)
(18)

3



Verifying Orthonormality

The coefficient matrix C is:

C =

 1√
2(1+S)

1√
2(1−S)

1√
2(1+S)

− 1√
2(1−S)

 (19)

Let’s verify orthonormality:

CT
(
1 S

S 1

)
C =

(
1 0

0 1

)
(20)

Problem 10 Part (b): Kinetic Energy Analysis

The kinetic energy expectation value is:

⟨ψ| T̂ |ψ⟩ = 2 ⟨σg | (−
1

2
∇2) |σg⟩+ 2 ⟨σu | (−

1

2
∇2) |σu⟩ (21)

Qualitative Analysis of Kinetic Energy

σg

σu

Figure 1: Schematic representation of σg and σu orbitals

The σu orbital has a node and more spatial variation, leading to larger kinetic

energy:

⟨σu | (−
1

2
∇2) |σu⟩ > ⟨σg | (−

1

2
∇2) |σg⟩ (22)

Part (c): Coulomb and Exchange Energies

Using the properties of Slater determinant wavefunctions, we derive:
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Coulomb Energy

J = 2 ⟨σgσg | r−112 |σgσg⟩+ 4 ⟨σgσu | r−112 |σgσu⟩
+ 2 ⟨σuσu | r−112 |σuσu⟩ (23)

This represents:

• Direct interaction between electrons in σg orbitals

• Cross-interaction between σg and σu electrons

• Direct interaction between electrons in σu orbitals

Exchange Energy

K = ⟨σgσg | r−112 |σgσg⟩+ 2 ⟨σgσu | r−112 |σuσg⟩
+ ⟨σuσu | r−112 |σuσu⟩ (24)

The exchange terms arise from:

• Exchange between same-spin electrons in σg orbitals

• Exchange between same-spin electrons in σg and σu orbitals

• Exchange between same-spin electrons in σu orbitals

Physical Interpretation

1. The molecular orbitals maintain proper symmetry (σg symmetric, σu antisym-

metric)

2. The normalization factors depend on the atomic orbital overlap S, showing

how bonding affects orbital structure

3. The higher kinetic energy of σu reflects the antibonding nature of this

orbital

4. The Coulomb and exchange energies show both intra-orbital and inter-

orbital electron interactions

5. The factor of 2 in various terms reflects the double occupation of orbitals
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